

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

FEB | 1 1992

OFFICE OF PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT: Tribufos (DEF®) Reproduction Studies

TO:

Bruce Sidwell PM-53 Reregistration Branch

Special Review and Reregistration Division (H7508C)

FROM:

Robert P. Sendzian Ph.D Senior Pharmacologist SACB, HED (H7509C)

THROUGH: Albin Kocialski Ph.D.

Head

Reregistration Section

William Burnam

Acting Chief

Science Analysis and Coordination Branch

HED (H7509C)

Compound; Tribufos (DEF®)

Tox Chem #864

Registration #074801

Registrant; Mbay

MRID #420402-01, 02 & 03

Tox Project #2-0264

Action Requested

Review the following studies;

Citation

A two-generation dietary reproduction study in rats using Tribufos (DEF®), D.A. Eigenberg; Mobay, Corporate Toxicology Department, Study Number 88-671-AK; Sept 10, 1991; MRID 420401-

Core Classification Guideline

Conclusion

Doses tested 0. 4. 32 and 260 ppm. Only compound-related effect on reproduction, significant increase in dead pups Fla and F2a litters LEL 260 ppm, NOEL 32 ppm. Most sensitive effect, blood cholinesterase inhibition in adults. LEL for plasma and erythrocyte cholinesterase depression 4 ppm (LDT),

-2-

No NOEL. In pups, decreased cholinesterase activity greatest 21 days in the F1a females plasma cholinesterase activity significantly decreased LEL 32 ppm, NOEL 4 ppm.

Citation

A Cross-Fostering study in rats using Tribufos (DEF®) administered in the diet, D.A. Eigenberg; Mobay, Corporate Toxicology Department, Study Number 88-971-BZ; Aug 29, 1991; MRID 420401-03

Core Classification Acceptable

Conclusion

Cross fostering study to determine if pup loss in study 88-671-AK was due to treatment of dams, pups in utero or both. Doses tested 0 and 260 ppm. Group II negative control-untreated pups & dams, Group I experimental-treated pups untreated dams, Group III experimental-untreated pups treated dams, Group IV positive control-treated pups treated dams. Mean pup loss 0.00, 0.47, 1.50 & 2.85 respectively. Cannibalism in treated dam groups (III & IV). Evidence for both mechanisms plus a synergistic effect in group IV.

Citation

A dietary reproductive toxicity study investigation the fertility of F1 rats using Tribufos (DEF®), D.A. Eigenberg; Mobay, Corporate Toxicology Department, Study Number 88-971-DC; Aug 27, 1991; MRID 420401-02

Core Classification Unacceptable

Conclusion

The following footnotes were contained in the report;
"Due to an error, the control and 260 ppm rats received a
mixture of control and 260 ppm feed for one day during week
13 of the study (i.e., mating/gestation phase).
"Due to a feeding error, terminal cholinesterase values were
obtained from 6 high dose and 8 control animals."
No explanation was found in the test. It is not certain how
the feeding errors, particularly the second might have affected
the study. This may have been of critical importance since
only 8 control and 6 high dose females were available for
cholinesterase analysis out of 30 females on each dose.

Attachments DERs 1-liners

Data Evaluation Report

Compound Tribufos (DEF)

Citation

A two-generation dietary reproduction study in rats using Tribufos (DEF®), D.A. Eigenberg; Mobay, Corporate Toxicology Department, Study Number 88-671-AK; Sept 10, 1991; MRID 420401-01

Reviewed by Robert F. Zendzian Ph.D. Senior Pharmacologist
Health Effects Division

Core Classification Guideline

Conclusion

Doses tested 0. 4. 32 and 260 ppm. Only compound-related effect on reproduction, significant increase in dead pups F1a and F2a litters LEL 260 ppm, NOEL 32 ppm. Most sensitive effect blood cholinesterase inhibition in adults. LEL for plasma and erythrocyte cholinesterase depression 4 ppm (LDT), No NOEL. In pups, decreased cholinesterase activity greatest 21 days in the F1a females plasma cholinesterase activity significantly decreased LEL 32 ppm, NOEL 4 ppm.

Materials

Technical grade Tribufos
Straw colored liquid
Batch No: 85R-26-39
98.5% (3/88)
99.7% (9/88)
98.8% (3/89)
From Mobay Ag Chemicals Division

Male and female albino CD Sprague-Dawley rats, six-eight weeks old,

from Sasco Inc Omaha Nebraska

Experimental Design

Thirty males and thirty females were assigned randomly to each of four test groups and dosed with 0, 4, 32 and 260 ppm tribufos in the diet. After 10 weeks on the test diet these FO animals were bred within their test groups. Thirty males and thirty females were selected from the weanlings of each test group to parent the second generation. After 10 weeks on the test diet these F1 animals were bred within their test groups.

Test material analysis

Test material was analyzed for identity, recovery in the feed, homogeneity in the feed, stability in the feed and concentration in the feed.

-2-

Breeding

One male and one female were cohabited for breeding for up to 21 days. Females were checked daily for vaginal plug and vaginal smears examined for sperm. When sperm was observed females were housed individually for gestation and lactation. Unmated females were cohabited with a second proven male for up to 7 days. Whether or not breeding was observed these females were subsiquently housed individually for gestation and lactation.

Estrous cycle staging

"Vaginal smears were taken for two weeks from ten FO and F1 females/dose and classified as diestrous, proestrous proestrous/esterus or estrous."

Clinical observations

Rats were observed daily for morbidity, mortality and clinical signs in the cage. Animals were individually examined weekly. Body weight and food consumption were measured weekly for each male and female. During gestation female body weight was determined on days 0, 6, 13 and 20 of gestation and days 1, 4, 7, 14 and 21 of lactation and food consumption weekly during gestation, twice during week one of lactation and once weekly during weeks 2 and 3

Live and still born pups and sex distribution were determined for each litter. Litter counts were performed daily and pup weights obtained within 24 hours of birth (day 0) and on days 4, 7, 14 and 21. Each litter was culled on day 4 to 8 pups, 4 males and 4 females were possible. Culls were sacrificed and subject to gross necropsy.

Plasma, red blood cell and brain cholinesterase were determined on 10 FO and F1 adults, plasma and RBC during week 8 and just prior to sacrifice and brain at termination. Plasma, RBC and brain cholinesterase were determined for one male and one female pup each from ten litters at culling (day 4 post partum) and at weaning (day 21 post partum).

Sacrifice/Necropsy/Histology

Culled pups were sacrificed by injection of euthanasia solution, adults and weanlings by ${\rm CO}_2$ asphyxiation. All animals were subject to gross necropsy.

"FO and F1 adult males were sacrificed after the last F1a and F2a litters, respectively, were delivered and/or the dams had gone past day 24 of gestation. A complete gross necropsy was performed and testicle and terminal body weights were measured. The testes, pituitary, epididymides, seminal

vesicles/coagulating gland, prostrate gland and gross lesions were collected and fixed in Bouin's fixative."

"FO and F1 adult females were sacrificed after each dam's pups were weaned/died or when day 24 of gestation was reached. Ovary and terminal body weights were measured. The pituitary, vagina, cervix, uterus, ovaries and gross lesions were collected and fixed in Bouin's fixative. The uterus from all dams was examined for implantation sites, and the number of sites were counted."

Results

Analysis of dosed feed showed that test material was homeogeniously distributed and stable for 14 days at room temperature.

No clinical signs indicative of cholinesterase toxicity were observed.

Weight and feed consumption of females during gestation and lactation is presented in Table from the report. At the high dose (260ppm) FO dams were reduced in weigh at gestation day 20 and throughout the lactation period and feed consumption was reduced throughout lactation. At the high dose (260ppm) F1 dams were reduced in weigh throughout the lactation period and feed consumption was reduced on days 14 and 21 of lactation.

No compound-related effect on mortality was observed in the adult rats. A statistically significant increase in pup mortality was observed at the high dose in both generations. Pups found dead, due to cannibalism or other causes, were as follows;

Dose	Fla	F2a
ppm	dead/total	dead/total
0	11/317	6/333
4	18/339	7/307
32	5/320	5/320
260	93/289	57/253

Mating and fertility induces are presented in Table 6 from the report. The fertility index of the F1 dams was depressed at 260 ppm.

Insemination and gestation lengths are summarized in Table 7 from the report. Gestation length was significantly increased at 260 ppm for the F2a litters.

Implantation sites and gestation, birth and live birth indices for the FO and F1 dams are sumarized in Table 8 from the report. Birth index and live birth index were significantly reduced for both generations at 260 ppm.

Gender mean data for pups are summarized in Table 9 from the report. In the F1a litters the portion of male pups is

decreased and the number of unknown sex pups is increased significantly. In the F2a litters the number of unknown sex pups is increased significantly.

Litter viability is summarized in Table 10 from the report. For the FO dams - F1a pups litter size was significantly reduced at birth and the viability index significantly reduced at days 4, 14 and 21 at 260 ppm. For the F1 dams - F2a pups litter the viability index was significantly reduced at days 4 and 21 at 260 ppm.

Number of litters with stillborn pups is summarized in Table 11 from the report. The number of litters with stillbirths is significantly increased for the F1 and F2 mating at 260 ppm.

Pup weight weight data are summarized in Table 13 from the Report. Fla pup mean weight is significantly decreased at 260 ppm on days 0, 4, 7, 14 and 21. F2a pup mean weight is significantly decreased on days 7, 14 and 21.

Pup cholinesterase activity is summarized in Table CC1-SUM from the report. In the F1a litters erythrocyte and brain cholinesterase activity were significantly decreased at 260 ppm in the females at day 4. In the same litters at day 21, a strange observation was the significant increase in brain cholinesterase activity at 4 ppm in both sexes. In the males plasma cholinesterase activity was significantly decreased at 260 ppm. In the females plasma cholinesterase activity was significantly decreased at 32 and 260 ppm and erythrocyte activity at 260 ppm.

In the F2a litters no significant effects were observed at 4 days. At 21 days plasma, erythrocyte and brain cholinesterase activity were significantly decreased in both sexes at 260 ppm.

Adult cholinesterase activity is summarized in Table CC3-SUM from the report. In the FO males plasma and erythrocyte cholinesterase activity were significantly decreased at 32 and 260 ppm for both samples and in the brain at 260 ppm. In the FO females plasma and erythrocyte cholinesterase activity were significantly decreased at 4 ppm at day 114 but not at day 56. Plasma, erythrocyte and brain cholinesterase activity were significantly decreased for all samples at 32 and 260 ppm.

In the F1 males erythrocyte cholinesterase activity was significantly decreased at 4 ppm on day 62 and on both days at 32 ppm. Plasma, erythrocyte and brain cholinesterase activity were significantly decreased for all samples at 260 ppm. In the F1 females erythrocyte cholinesterase activity was significantly decreased at 4 ppm at day 90 but not at day 62. Plasma, erythrocyte and brain cholinesterase activity was significantly decreased for all samples at 32 and 260 ppm.

No compound-related histopathological abnormalities were observed.

-5-

Discussion

The only compound-related effect on reproduction was a significant increase in dead pups in both the F1a and F2a litters at 260 ppm (NOEL 32 ppm).

The most sensitive compound-related effect was blood cholinesterase inhibition in the adults. Statistically significant effects are summarized in Table CC4-SUM from the report. The LEL for plasma and erythrocyte cholinesterase depression was 4 ppm (LDT). A NOEL was not determined.

In the pups, decreased cholinesterase activity was greatest at 21 days in the F1a females where plasma cholinesterase activity was significantly decreased at 32 ppm (NOEL 4 ppm).

S S

MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT REPRODUCTION STUDY WITH DEF STUDY NUMBER 88-671-AK

DAMS - FIA MATINGS GESTATION AND LACTATION

TABLE: 5

ODY WEIGHT (G) MEAN & STANDARD DEVIATION

LEVEL	GWO	GHG	GW 13	GW20	GWCHG	LW1	LW4	LW7	LW14	LW21	LWCHG	3)
CONTROL	256 24	271 23	298 25	37 6 31	12 1 15	286 25	301 27	30 6 2 6	333 25	315 21	29 19	\sim \sim \sim
4 PPM	2 59 23	278 23	302 24	379 36	120 19	294 26	308 21	315 22	332 30	326 22	32 15	3
32 PPM	257 21	273 23	299 25	37 8 32	122 19	293 26	313 28	317 30	332 35	322 27	29 13	<i>y</i>
280 PPM	248 24	262 29	284 30	348* 36	100* 14	269 29	278 * 32	282 * 31	294 * 33	283* 33	18 * 21	
										<u>Ω</u>		

1.1

FEED CONSUMPTION (G) MEAN & STANDARD DEVIATION

LEVEL	GFC B	GFC13	GFC20	LFC4	LFC7	LFC14	LFC21
CONTROL	106	13 6	152	103	1-124	366	448
	18	17	13	33	26	36	56
4 PPM	105	13 9	158	() 94	122	350	467
	11	10	15	15	16	49	61
32 PPM	101	141	. 159	98	128	371	465
	17	34	15	12	23	44	48
280 PPM	104 13	○ 139 13	150 14	77 24	* 101 ¹ 26	* 285 * 45	328 * 59
	3				**-		

^{* =} Statistically significantly different from the Control group (p \leq 0.05).

STUDY NUMBER 88-871-AK F2A MATINGS GESTATION AND LACTATION /

TABLE: 5	BODY WEIGHT (G) MEAN A STANDARD DEVIATION

LEVEL	GWO	GW6	GW13	GW20	GHCHG	LW1	LW4	LW7	LW14	LW21	LWCHG	2
CONTROL	253 23	269 26	290 25	358 34	105 26	27 9 25	291 27	297 29	307 30	308 28	29 21	S ()
4 PPM	255 20	27 6 20	2 99 23	374 30	118 28	290 23	302 24	300 22	31 8 23	308 2 9	18 20	\$ 8
32 PPM	259 24	27 9 23	303 25	386 # 32	127 * 15	2 94 23	311 * 27	308 23	322 27	320 25	26 14	્રે
260 PPM	237 35	252 37	274 42	33 8 54	101 24	259 * 33	268 * 37	268 * 41	280* 40	277 # 33	18	×

LEVEL	GFC8	GFC13	GFC20	LFC4	LFC7	LFC14	LFC21	
CONTROL	96 18	137 12	155 31	94 21	118 15	358 44	409 58	
4 PPM	104 11	145 11	() 184 12	101 22	123 10	358 33	481 37	
32 PPM	105	O 147 16	168 14	111 27	132 * 16	378 45	496 45	
280 PPM	d 102	143 22	155 22	94 26	115 38	312* 90	372 85	*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								

*  $\approx$  Statistically dignificantly different from the Control group (p  $\leq$  0.05).

TABLE 6

### Mating and Fertility Indices of Fl Dams in a Rat Reproduction Study Using Technical Tribufos

į

009140

### Study Number 88-671-AK

Dose Group	Number Co-housed	Number Sperm Positive	Number Delivered	Number with Implantation Sites	Mating Index	Fertility Index
Control	30 🌣	30	29	29	100	97
4.0 ppm	29	^ _{/ 29}	27	27	100	93
32.0 ppm	30	29	25	26	97	90
260.0 ppm	29	290	22	22	100	76
		$\wedge$				

Mating Index (%) =	# of sperm positive females # of females co-housed with males	X	100
	₹.		
Fertility Index (%) =	# of pregnant females (a)	2	100

(a) Females that deliver and/or have implantation sites.

TABLE 6

### Mating and Fertility Indices of F0 Dams in a Rat Reproduction Study Using Technical Tribufos

009140

### Study Number 88-671-AK

Dose Group	Number Co-housed	Number Sperm Positive	Number Delivered	Number with Implantation Sites	Mating Index	Fertility Index
Control	29	29	26	26	100	90
4.0 ppm	30	<b>→</b> 30	29	29	100	97
32.0 ppm	30	L 30	27	27	100	90
260.0 ppm	. 30	29	26	25	97	90

Mating Index (%) = # of sperm positive females X 100 # of females co-housed with males

Fertility Index (%) = # of pregnant females (a) X 100 # of sperm positive females

(a) Females that deliver and/or have implantation sites.

~

-8-

101255

TABLE 7

009140

### Insemination and Gestation Lengths in a Rat Reproduction Study Using Technical Tribufos (mean and standard deviation)

Study Number 88-671-AK

	O <u>insemination</u>	LENGTHS (DAYS)	GESTATION LENG	
		F2a	Fla	F2a
CONTROL		3.8 3.9	21.8 0.5	21.8 0.5
	>			
4.0 ppm	2.5- 1.1	2.6 2.5	22.0 0.7	22.0 0.5
32.0 ppm	2.7 1.5	3.0 3.0	21.9 0.6	22.0 0.4
260.0 ppm	3.6 3.6	3.5 3.1	22.2 0.7	22.4 * 0.7

^{* =} Statistically significantly different from the Control group  $(p \le 0.05)$ .

101255

Implantation Sites, and Gestation, Birth and Live Birth Indices for F0 and F1 Dams in a Rat Reproduction Study Using 009140
Technical Tributos
(mean and standard deviation)

Study Number 88-671-AK

	GESTATION INDEX (%)	IMPLANTATION SITES
		Fla F2a
CONTROL	<u>^</u> 100 100	13 12
	ophi	2 3
4 ppm	100 96	13 12
	L	2 3
32 ppm	100 _96	13 14 *
	$\bigcup$	2 3
260 ppm	92 95	13 11
		2 4

1

	BIRTH I	NDEX (%)	e e e e e e e e e e e e e e e e e e e	LIVE BIR	F2a	(%)
			سنر	_		
CONTROL	91	92		100	99	
	7	11		1	4	•
4 ppm	89	91	0	97	99	
••	11	14		. 11	3	
32 ppm	90	92		<b>1</b> 00	100	
	13	7		9	2	
260 ppm	77 *	87		87 *;;	91 *	
	16	17		21	14	
					$\nabla$	

^{* =} Statistically significantly different from the control group (p<0.05) with a Bonnferroni adjustment where applicable.

Gestation index (%) = # of females with live pups X 100
# of pregnant females

Birth index (%) = Total # of pups born/litter X 100

Total # of implantation sites/litter

Live Birth index (*) = Live pups born/litter X 100 Total * of pups/litter

10-

## MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMEN RAT REPRODUCTION STUDY WITH DEF STUDY NUMBER 88-871-AK FIA - PUP GENDER

MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT
RAT REPRODUCTION STUDY WITH DEF
STUDY NUMBER 88-671-AK
F2A - PUP GENDER

#### TABLE: 9

### GENDER MEAN & STANDARD DEVIATION

LEVEL	MALE	FENALE PUP	UNKNOWN PUP
CONTROL	6 2	7 2	0
4 PPH	<b>6</b> 2	<b>6</b> 2	0
32 PPM	•	6 2	0
260 PPN	3 2	6	1

### GENDER MEAN & STANDARD DEVIATION

LEVEL	MALE PUP	FEMALE PUP	UNKNOWN PUP
CONTROL	8 2	6 2	0
4 PPM	5 2	6 2	0
32 <b>PPM</b>	<b>e</b> 2	7 2	0
280 PPH	<b>5</b>	<b>5</b> 2	0 1

#### GENDER RESCENT MEAN & STANDARD DEVIATION

LEVEL	MALE PUP	FEMALE (	UNKNOWN
CONTROL.	47 11	63 > 11	0
4 PPM	51 O	48 14	2 6
32 PPN	<b>d</b> 52 13	48 13	0
200 PPN	38 * 15	53 19	9 * 15
r-;t			

#### GENDER PERCENT MEAN & STANDARD DEVIATION

LEVEL	MALE PUP	FEMALE PUP (	UNKNOWN PUP
CONTROL	48 14	52 _. \	0
4 PPN	47 10 C	52 18	1
32 PPN	d 19	53 14	0
260 PPN >	46 19	48 17	5 *
<i>L</i> )			

* = Statistically significantly different from the Control group (p  $\leq$  0.05).

 $\begin{array}{c} \mathbf{01255} \\ 009140 \end{array}$ 

### MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT REPRODUCTION STUDY WITH DEF STUDY MUMBER 88-871-AK : FO DAMS - F1A PUPS LITTER COUNTS

TABLE: 10

### LITTER VIABILITY MEAN & STANDARD DEVIATION

LEVEL	LITTER	STILL	UNKNOWN	DAY O	LIVE COUNT DAY4 PRECULL	LIVE COUNT DAY4 POSTCULL	LIVE COUNT DAY 7	LIVÉ COUNT DAY 14	LIVE COUNT DAY 21
CONTROL	12 2	0	0	12 2	12 3	•	8 1	8 1 _{\lambda}	0 :
4 PPM	12 2	0	0	12 3	11 3	7 2	7 2	37	7 2
32 PPM	12 2	0	0	12 2	12 2	8		> °	<b>8</b> 0
260 PPM	10 * 3	1	1 * 2	4	6 5	5 3		4	4
							$\mathcal{Q}$		

O 13

LEVEL	VIABILITY INDEX DAY 4	VIABILITY INDEX DAY 7	VIABILITY INDEX DAY 14	VIABILITY INDEX DAY 21
CONTROL	96 13	100	100	100
4 PPN	7.96	99 5	99 5	98 5
32 PPM	O 100 1	100 2	99 3	<b>99</b>
260 PPN 7	73 <b>*</b> 40	94 23	83 * 37	83* 37

* = Statistically significantly different from the Control group (p(0.05)).

### MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT REPRODUCTION STUDY WITH DEF STUDY NUMBER 88-671-AK : F1 DAMS - F2A PUPS LITTER COUNTS

TABLE: 10

### LITTER VIABILITY MEAN & STANDARD DEVIATION

LEVEL	LITTER	STILL BORN	UNKNOWN	LIVE COUNT DAY O	LIVE COUNT DAY4 PRECULL	LIVE COUNT DAY4 POSTCULL	LIVE COUNT DAY 7	LIVE COUNT DAY 14	LIVE COUNT DAY 21
CONTROL	11	0	0	11 3	11 3	8	8	1,	
4 PPM	11 3	0	0	11 3	11 3	. 8	8 2	3 2	7 2
32 PPM	12 4	0	0	12 4	12 4	7 2	. 7 2	> 7	7 2
260 PPM	10 3	1 3	0* 1	4	7 5	6 3	3.	<b>6</b> 3	5 3
+							$\Omega$		

LEVEL	VIABILITY	VIABILITY	VIABILITY	VIABILITY
	INDEX DAY 4	INDEX DAY 7	INDEX DAY 14	INDEX DAY 21
CONTROL.	97	( ) 100	100	100
	10	2	2	2
4 PPM	.100	100 0	100 2	<b>99</b> 3
32 PPN	O **	90	<b>99</b> 3	. 99
280 PPM 7	81 *	<b>9</b> 5	91	90 *
	33	23	25	25

* = Statistically significantly different from the Control group (p $\leq 0.05$ ).

-13-

101255

TABLE 11

009140

### Litters With Stillborn Pups in a Rat Reproduction Study Using Technical Tribufos

Study Number 88-671-AK

# OF LITTERS # OF LITTERS WITH STILLBIRTHS DELIVERED MATING 26 0 ppm F1 29 4.0 ppm 32.0 ppm 260.0 ppm 27 25 0 ppm 4.0 ppm F2 27 32.0 ppm 260.0 ppm 25 22

* = Statistically significantly different from the Control group (p<0.05).

## MOBAY CORPORATION CORPORATE TOXICOLOGY DEPARTMENT RAT REPRODUCTION STUDY WITH DEF

### STUDY NUMBER 88-671-AK F1A - AVERAGE PUP WEIGHTS

TABLE: 13

WEIGHT (G) MEAN & STANDARD DEVIATION

LEVEL	WTDAYO	WTDAY4	WTDAY7	WTDAY14	WTDAY21	$\circ$
CONTROL	7.1 0.6	10.0 1.2	18.0 1.8	31.5 2.5	49.5 5.5	28
4 PPM	7.1 0.7	9.9 1.5	15.6 2.3	30.5 3.4	50.2 6.0	ν, δ, γ
32 PPM	7.2 0.8	10.1 1.2	16. 1 1. 7	31.1 3.3	50.1 5.8	<i>Y</i>
280 PPM	6.3* 0.6	7.8 * 1.6	11.2 * 3.0	23.1 * 3.7	35.2* 6.2	0

#### MGBAY CORPORATION CORPORATE TOXICOLOGY DEPARTMENT RAT REPRODUCTION STUDY WITH DEF

#### STUDY NUMBER 68-671-AK F2A - AVERAGE PUP WEIGHTS

TABLE: 13

WEIGHT (G) MEAN & STANDARD DEVIATION

8	WTDAY21	WTDAY 14	WTDAY7	WTDAY4	WTDAYO	LEVEL
$\bigcirc$	49.1	30.5	15.2	9.6	6.8	CONTROL
δ	5.8	4.0	2.0	1.5	0.8	
3	49.5	30.8	18.4 *	10.2	7.2*	4 PPM
15	4.8	2.4	1.5	1.0	0.5	
\	50.2	30.5	16.2	9.9	7.0	32 PPH
<b>X</b>	5.8	2.6	1.7	1.4	0.5	
,	38.3 *	23.9 *	13.0 #	8.7	6.7	260 PPM
$\cap$	5.9	3.6	2.0	1.5	0.8	

^{* -} Statistically significantly different from the Control group ( $p \le 0.05$ ).

00914n

-15-

### TABLE CC1-SUM

COMPOUND: TRIBUFOS STUDY #: 88-671-AK STUDY TYPE: REPRODUCTION

PUP CHOLINESTERASE SUMMARY (PLASMA, ERYTHROCYTE AND BRAIN VALUES)

SEX: BOTH SPECIES: RAT DURATION: TWO-GENERATION

δ

8

6

()

LITTER F1A, PUP AGE 4-DAY, AND PUP SEX M

			DOSAGE	GROUP	
		CONTROL.	4 PPM	32 PPM	260 PPM
PLASMA CHOLINESTERASE	MEAN	0.59	0.57	0.61	<b>∂ 0.53</b>
CHULINES I ENNSE	STD	0.09	0.08	0.07	<b>&gt;</b> 0.03
	N	10.00	10.00	10.00	2.00
ERYTHROCYTE	MEAN	2.95	<b>*</b> 2.59	2.86	2.93
CHOLINESTERASE	STO	0.11	0.22	كى	0.40
	N	10.00	10.00	10.00	2.00
BRAIN	MEAN	4.44	4.32	4.32	4.08
CHOLINESTERASE	STD	0.50	0.36	0.36	0.11
*	N	10.00	10.00	10.00	2.00

LITTER F1A, PUP AGE 4-DAY, AND PUP SEX F

		DOSAGE GROUP				
		CONTROL	4 PPM	32 PPM	260 PPM	
PLASMA	MEAN	0.61	0.61	0.59	0.58	
CHOLINESTERASE	STD	0.08	0.11	0.06	0.09	
	M	10.00	10.00	10.00	10.00	
ERYTHROCYTE	MEAN	2.86	2.62	2.78	<b>* 2.47</b>	
CHOLINESTERASE	STD	0.32	0.44	<b>∂</b> 0.21	0.37	
	N	10.00	10.00	10.00	10.0C	
BRAIN	MEAN	4.56	√4.43	4.42	<b>* 4.00</b>	
CHOLINESTERASE	STD	0.50	0.54	0.30	0.41	
	N	10.00	10.00	10.00	10.00	

### TABLE CC1-SUM

COMPOUND: TRIBUFOS STUDY #: 88-671-AK STUDY TYPE: REPRODUCTION

CHOLINESTERASE SUMMARY (PLASMA, ERYTHROCYTE AND BRAIN VALUES)

SEX: BOTH SPECIES: RAT DURATION: TWO-GENERATION

δ

15

6

LITTER F1A, PUP AGE 21-DAY, AND PUP SEX M

		i	DOSAGE	GROUP	
		CONTROL.	4 PPM	32 PPM	280 PPM
PLASMA	MEAN	0.69	0.67	0.57	¥ 0.44
CHOLINESTERASE	STD	0.15	0.12	0.10	> 0.18
	N	10.00	10.00	10.00	10.00
ERYTHROCYTE CHOLINESTERASE	MEAN	3.01	<b>* 3.39</b>	<u>( )</u> 3.20	2.67
	STD	0.24	0.34	<b>)</b> 0.43	0.68
	N	10.00	10.00	10.00	10.00
BRAIN	MEAN	11.62	* 14.18	13.07	10.84
CHOLINESTERASE	STO	0.37	0.62	1.35	1.24
	N	10.00	10.00	10.00	10.00

PUP AGE 21-BAY, AND PUP SEX F

		i	DOSAGE	GROUP	
		CONTROL	4 PPM	32 PPM	200 PPM
PLASMA	MEAN	0.65	0.72	<b>* 0.53</b>	>₩ 0.40
CHOLINESTERASE	STD	0.10	0.11	0.00	<b>)</b> 0.14
	N	10.00	10.00	10.00	7.00
ERYTHROCYTE CHOLINESTERASE	MEAN	3.33	3.40	3.20	<b>* 2.5</b> 8
	STD	0.30	0.24	ر 0.31	0.59
	N	10.00	10.00	10.00	7.00
BRAIN	MEAN	12.07	¥14.33	12.44	11.30
CHOLINESTERASE	STD	0.68	1.48	0.91	1.76
	N	10.00	10.00	10.00	7.00

* * SIGNIFICANTLY DIFFERENT FROM CONTROL VALUE (P<=0.05).

### TABLE CC1-SUM

COMPOUND: TRIBUFOS STUDY N: 88-671-AK STUDY TYPE: REPRODUCTION

PUP CHOLINESTERASE SUMMARY (PLASMA, ERYTHROCYTE AND BRAIN VALUES)

SEX: BOTH SPECIES: RAT DURATION: TWO-GENERATION

9

8

LITTER F2A. PUP AGE 4-DAY, AND PUP SEX M

		DOSAGE GROUP							
		CONTROL	4 PPM	32 PPM	280 PPM				
PLASMA CHOLINESTERASE	MEAN	0.59	0.62	0.64	0.62				
CUDITIVE 3   EKYSE	STD	0.07	0.09	0.10	> 0.06				
	N	10.00	10.00	10.00	9.00				
ERYTHROCYTE CHOLINESTERASE	MEAN	3.34	3.49	3.32	3.07				
	STD	0.34	0.25	ک 0.20	0.20				
	N	10.00	10.00	10.00	9.00				
BRAIN	MEAN	4.47	14.61	4.49	4,39				
CHOLINESTERASE	STD	0.25	0.33	0.26	0.37				
	N	10.00	10.00	10.00	9.00				

LITTER F2A, PUP AGE 4-DAY, AND PUP SEX F

()

ND PUP SEX F			DOSAGE GROUP									
		CONTROL	4 PPM	32 PPM {	260 PPM (							
PLASMA	MEAN	0.62	0.65	0.59	0.63							
CHOLINESTERASE	STD	0.06	0.08	0.10	0.09							
	N	10.00	10.00	10.00	6,00							
ERYTHROCYTE CHOLINESTERASE	MEAN	3.34	3.37	3.21	3.11							
O'DLINES I ERRSE	STD	0.35	0.44	0.19	0.37							
	N	10.00	10.00	10.00	8.00							
BRAIN	MEAN	4.60	4.56	4.54	4.45							
CHOLINESTERASE	STD	0.27	0.18	0.29	0.39							
_	N	10.00	10.00	10.00	6.00							

* = SIGNIFICANTLY DIFFERENT FROM CONTROL VALUE (P<=0.05).

### TABLE CC1-SUM

COMPOUND: TRIBUFOS STUDY #: 88-671-AK STUDY TYPE: REPRODUCTION

TUDY #: 88-671-AK PUP CHOLINESTERASE SUMMARY (PLASMA, ERYTHROCYTE AND BRAIN VALUES)

SEX: BOTH SPECIES: RAT DURATION: TWO-GENERATION

δ

6

LITTER F2A, PUP AGE 21-DAY, AND PUP SEX M

		DOSAGE GROUP							
		CONTROL.	4 PPM	32 PPM	260 PPM				
PLASMA CHOLINESTERASE	MEAN	0.61	0.66	0.48	<b>30.30</b>				
Cuntimes I emyse	STD	0. 10	0. 12	0.08	<b>0.16</b>				
	N	10.00	11.00	10. <b>0</b> 0	10.00				
ERYTHROCYTE CHOLINESTERASE	MEAN	2.75	2.95	2.74	<b>*2.08</b>				
	STD	0.20	0.35	$\lambda$ 0.33	0.82				
	N	10.00	11.00	10.00	10.00				
BRAIN	MEAN	11.53	√1 Ì . 68	11.38	<b>*9.85</b>				
CHOLINESTERASE	STO	0.36	0.48	0.51	1.40				
	M	10.00	10.00	10.00	10.00				

LITTER F2A, PUP AGE 21-DAY, AND PUP SEX F

		   	DOSAGE	GROUP	
	e e	CONTROL	4 PPM	32 PPM	280 PPN
PLASMA	MEAN	0.58	0.69	0.52	> 40.21
CHOLINESTERASE	STD	0. 13	0.11	0 14	<b>\</b> 0.11
 	N	10.00	10.00	10.00	10.00
ERYTHROCYTE CHOLINESTERASE	MEAN	2.78	2.96	2.80	<b>*</b> 1.70
	STD	0.27	0.30	λ 0.3 <b>9</b>	0.45
	N	10.00	10.00	10.00	10.00
BRAIN	MEAN	11.64	√11.66	11.66	* 9.85
CHOLINESTERASE	STD	0.38	0.86	0.25	0.97
į	N	10.00	9.00	10.00	10.00

* * SIGNIFICANTLY DIFFERENT FROM CONTROL VALUE (P<=0.05).

δ σ C

9140

MORAY Toxicology Department Study : 88-671-AK-F1 Species : Nat Generation : F0	Departs (-F1	. tr.	A TWO-GENERAL STUDY IN BAIR	CENTRATION N	ERATION REPRODUCTION MATS WITH DEF					21-15:
				1	(0.2) VV-10-00	THE TE CH	0 1 1 0			#
	<b>,</b>					-Nominal days in	study .	127		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 F F		Day 56 PChe IU/al	Day 56 RChe IU/ml	Day 127 PChe IU/ml	Day 127 RChe IU/ml				; ; 	
Maa o	¥ 6 c	0.56	2.63 0.16 10	0.30 0.10	2.05 0.16 10	H44 0	<b>1</b> 2 °	12.0 10.5		
Haa +	<b>#</b> 4 "	0.0 0.13 10 10	2.66 0.16 10	0.00	2.83 0.17 10	H44 -	<b>1</b> 2 °	12.5 0.9		
32 FPN	¥ * *	0.30 0.12 0.00	1.724 0.20 10	0.06	1.96*	32 214	£ 2 c	12.7 0.7 10		
360 PPR	# E *		4 K C C C C C C C C C C C C C C C C C C	0.11° 0.03 10	1.35 0.04 10	260 PPH	<b>16</b> *	0.0		
4 4 2 8		Day 86 POP- 10/M1	Day 56 RChe IU/ail	Day 114 Pche IU/ml	Day 114 RChe IU/ml	7 E M A L M 6	Ö	) ////~0		
0 PPH	16.	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.51 0.14 10	0.94 0.17	2.00 0.14		<b>1</b> 6 °	12.0 1.1		
74. T	<b>1</b> 2 °	1.57 0.57	0.3 0.14	0.70* 0.16* 10	2.524 0.20 10	HA4 +	# ·	12.5 0.5 0.5		
32 PPM	<b>18</b> °	0.30	1.50	0.06	1.56*	32 P184	# °	9.18 10.28 10.28		
260 FPH	<b>18</b> °	00.10	1.20	0.03 0.02 10	1.38 0.09 10	260 PPM	Mean Bo	0.0 4.0 4.0		
Statistics: Anova + Dunnetts tasts (two-s	Dunna 3		(two-e1444)	\$0.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8			(Exp. Onit =	- Anim1)		1255

		STUDY NUMBER 66-671	-671-AK(F1)	 	* • <b>664</b>	
	*				C A	
	Day 62 RChe IU/ml	Day 111 Pche IU/mi	Day 111 RChe IU/ml	Day 111 BChe 1U/g		
	3.36 0.21 10	0.93 0.13	3.21 0.26 10	4, 64 4.0	< p	
	8.0 10.0 10.0	0.59 0.21	3.05 0.12 10	#) <b>@</b> 0	<i>&gt;</i>	
	4.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3	0.52 0.17	2.32* 0.19 10			
	11.93	0.17 0.11 10	1.97* 0.32 10	0.0		-20
<b>!</b>	Day 62 ECho IU/ml	Day 90 PChe IU/ml	Day 90 RChe IU/ml	Day 90 BChe IU/g		) <b>-</b>
	9.11 0.18 10	0.22	2.36 0.19 10	13.2 0.7 10	( P	
1	9.03 0.25 10	0.71 0.17 10	2.20* 0.18 10	13.2 0.5 10	<i>\( \tau_{\tau} \)</i>	
22 PT	9.24 0.10 10	0.23*	1.20	0		
240 PPH Neam 0.10* AD 0.03 n n	1.72* 0.10	0.06	1.10*	8.00 8.00		
	(two144d) :	80 0 0		·	(Exp.Onit = Asimal)	) 1 ⁰⁰⁹¹⁴⁰

OC3-60M

009140

Table CC4-SUM

A Two-Generation Reproduction Study in Rats With DEF Percent Cholinesterase Depression from Control (Statistically Significant Activities Only) Study Number 88-671-AK

### Adults

		Pre	<u>nating</u>		$\frown$		-			<u>Te:</u>	rmina	<u>ation</u>			
<u>Generation</u>		PCH	<u> </u>		RCH	3	******	PCH	<u> </u>		RCH	3		BCHI	<u> </u>
FO Males	32	ppm	(32%)	32	ppm	(35%)	32	ppm	(18%)	32	ppm	(31%)			
	260	ppm	(70%)	260	ppm	(50%)	260	ppm	(78%)	260	ppm	(53%)	260	ppm	(36%)
Fl Males				4	ppm	(9 <b>%</b> ) ~									
				32	ppm	(26%)				32	ppm	(28%)			
	260	ppm	(57%)	260	ppm	(43%)	-260	ppm	(68%)	260	ppm	(39%)	260	ppm	(33%)
FO Females							74	ppm	(26%)	4	ppm	(12%)			
	32	ppm	(68%)	32	ppm	(37%)			(72%)	32	ppm	(46%)	32	ppm	(29%)
	260	ppm	(91%)	260	ppm	(49%)	260	ppm	(90%)	260	ppm	(52%)			(81%)
F1 Females									$\hat{\zeta}$	4	ppm	(7%)	•		
	32	ppm	(59%)	32	ppm	(28%)	32	ppm	(724)	32	ppm	(49%)	32	ppm	(29%)
			(93%)			(45%)			(934)			(53%)			(81%)

1/15/92

Data Evaluation Report

009140

Compound Tribufos (DEF)

### Citation

A Cross-Fostering study in rats using Tribufos (DEF®) administered in the diet, D.A. Eigenberg; Mobay, Corporate Toxicology Department, Study Number 88-971-BZ; Aug 29, 1991;

MRID 420401-03

Reviewed by Robert P. Zendzian Ph.D.

Senior Pharmacologist Health Effects Division

Core Classification Acceptable

### Conclusion

Cross fostering study to determine if pup loss in study 88-671-AK was due to treatment of dams, pups in utero or both. Doses tested 0 and 260 ppm. Group II negative control-untreated pups & dams, Group I experimental-treated pups untreated dams, Group III experimental-untreated pups treated dams, Group IV positive control-treated pups treated dams. Mean pup loss 0.00, 0.47, 1.50 & 2.85 respectively. Cannibalism in treated dam groups (III & IV). Evidence for both mechanisms plus a synergistic effect in group IV.

### Materials

Technical grade Tribufos
Straw colored liquid
Batch No; 85R-26-39
99.7% (9/88)
98.8% (3/89)
98.1% (9/89)
From Mobay Ag Chemicals Division

Male and female albino CD Sprague-Dawley rats, seven weeks old, from Sasco Inc Omaha Nebraska

### Experimental Design

Sixty males and 120 females were assigned randomly to each of four test groups of 15 males and 30 females each. Groups 1 and 2 received 0 ppm and groups 3 and 4 received 260 ppm tribufos in the diet. After 10 weeks on the test diet these animals were bred within their test groups. After birth pups from groups 1 and 3 were cross fostered so that the 0 ppm dams reared pups from 260 fed dams and the 260 ppm dams reared pups from 0 ppm dams. Pups from group 2 and 4 were cross fostered within the test groups. That is, pups from 0 ppm dams were raised by 0 ppm dams that were not their birth dams and the same with pups from 260 ppm dams.

### Test material analysis

Test material was analyzed for identity, recovery in the feed, homogeneity in the feed, stability in the feed and concentration in the feed.

### Breeding

After ten weeks on treated diet, 1 male and 2 females were cohabited for breeding for up to 21 days. Females were checked daily for vaginal plug and vaginal smears examined for sperm. When sperm was observed females were housed individually for gestation and lactation. At 21 days females not observed as breeding were caged individually for 24 days in case breeding had occured.

### Parturition and cross-fostering

Beginning on day 21 of gestation, females were checked hourly (during working hours) for parturition. Upon completion of delivery pups were culled to four males and four females per litter. Pups were cross fostered as stated in the experimental design by transfering whole litters within approximately 36 hours of birth. Litters that were not crossfostered and pups from groups II and IV were saved for a study to examine the fertility of F1 pups (study 89-971-DC).

### Clinical observations

Rats were observed daily for morbidity, mortality and clinical signs in the cage. Animals were individually examined weekly.

Live and still born pups and sex distribution were determined for each litter. Litter counts and pup weights were obtained at birth (day 0) and on days 4, 7, 14 and 21.

Plasma, red blood cell and brain cholinesterase were determined on 10 females per dose group, plasma and RBC during week 8 and just prior to sacrifice and brain at termination.

### Sacrifice

Culled pups were sacrificed by injection of euthanasia solution, adults and weanlings by  ${\rm CO}_2$  asphyxiation. Gross necropsy was not performed and no tissues were collected for histopathology.

### Results

Analysis of dosed feed showed that test material was homeogeniously distributed and stable for 14 days at room temperature.

Data collected during the study are summarized in Tables 2 through 7 from the report as follows;

- Table 2, Pup observations summary.
- Table 3, Average number of pups missing or cannibalized before cross foster.

  Average number of pups missing or cannibalized after cross foster.
- Table 4, Viability index.
- Table 5, Affect (sic) of cannibalization on the 21-day viability index.
- Table 6, Litter weight.
- Table 7, Cholinesterase data.

The largest number of pup observations were found in control pups fostered by treated dams. Although the lest number of pup observations were reported in control pups fostered by control dams, they were only one or two less than treated pups by treated dams and treated pups by control dams.

Before cross foster, the mean number missing/cannibalized pups almost exclusively confined to liters from 260 ppm dams. After cross foster, mean missing/cannibalized were in the order Group IV (260 dams - 260 pups)> Group III (260 dams - control pups)> Group I (control dams - 260 pups)> Group II (control dams - control pups).

The viability index, for fostered pups, followed the same order as the missing/cannibalized after cross foster in that viability from lowest to highest followed the order Group IV, Group III, Group I, Group II. The effect of cannibalism on the day-21 viability index followed the same order.

Mean litter weights were similar on day 0 but growth was depressed in the order (least growth to most growth) Group IV, Group III, Group II.

Cholinesterase data showed a significant depression of activity in the dosed dams at week 9 and at termination, plasms and erythrocyte at both occasions and brain at termination.

### Discussion

A 2-generation reproduction study of tirbufos in rats showed a significant pup loss at the high dose (260 ppm). Part of this loss was attributed to cannibalization of pups. Cannibalization may be either primary, in that dams kill and

eat normal pups or secondary in that dams kill and eat sick pups and/or eat dead pups. This study was designed to distinguish these two possibilities. Group II was the negative control in that untreated dams fostered pups from other untreated dams. Group IV was the positive control in that treated dams fostered pups from other treated dams. Group I was the experimental group for assesing the effect on pups of treated dams in that untreated dams fostered pups from treated dams. Group III was the experimental group for assesing the effect of treated dams in that treated dams fostered pups from untreated dams.

The origional study also showed an apparent decreased birth weight in the 260 ppm pups. This was considered as possibly due to the pups being weighed as long as 24 hours after birth. In this study the pups were weighed at birth directly before cross fostering.

Table A presents selected data on pup survival/loss and the cause of that loss. The least effect was in the negative control group were no pups were lost and the greatest effect was in the positive control group with a mean of 2.85 pups lost per litter. Losses also occured in both the treated pup group and the treated dam group, the greatest loss in the latter group. This indicates two effects, one in utero on the pups of treated dams and the second on the treated dam. A very crude attempt has been made to determine if these two effects together are additive or synergistic (greater than additive). The mean number of pups lost from Groups I and III are summed (this is permissable since the number of litters are essentially the same, 17 & 18). These sums are less than the group IV values, 84, 37 and 69 percent respectively, and indicate the possibility of a synergistic effect. Cannibalism can be considered due to treatment of the dams but the additional noncannibalistic loss was an effect. on the pups secondary to treatment of the dams.

Litter weights were essentially the same at birth but a clear effect of dam treatment was observed at 21 days and was more than could be attributed to pup loss (Table 6).

Table A. Summary of selected pup data

	Mean ni	umber of pups Da	ay 21		Viabili	ity Inde:	ς.	Viability Index Adjusted for cannibalization
	Missing		Total	Day 4		Day 14		Day 21
Group II (24)a negative control Untreated Pups & Dams	0.00	0.00	0.00	100	100	100	100	100
Group I (17) Untreated Dams Treated pups	0.47	0.00	0.47	82	82	82	82	91
Group III (18) Treated dams Untreated Pups	1.17	0.33	1.50	81	68	63	63	83
Group IV (20) Positive Control Treated Dams Treated Pups	1.95	0.90	2.85	39	31	28	28	72
SUM Groups I & III	1.64	0.33	1.96					
(% of Group IV)	84	37	69					

a. number of litters

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPAREMENT 254 RAT CROSS FOSTERING STUDY WITH DEF STUDY NUMBER 88-971-BZ

### PUP OBSERVATIONS SUMMARY

	FOSTER	PUP	]		DAY(S)
DAM #	ØDAM #	NUMBER	SEX	OBSERVATION	OBSERVED
CONTROL	PURS FOST	ERED BY TE	REATED	DAMS	
BZ0101	BZ3117	9	FEMALE	Bite mark and hematoma on chest.	7
BZ0102	BZ3123	3	MALE	Tip of tail missing.	21
BZ0109	BZ3128	ر ب 10	FEMALE	Bite marks on dorsal side.	3
BZ0113	BZ3130	Δ	MALE	Cold and weak.	4
		7 2 3	MALE	Cold and weak.	4
		3	MALE	Cold and weak.	4
BZ0114	BZ3105	1 0	MALE	Weak.	4
		4	<b>⋌MALE</b>	Weak.	4
		7	FEMALE	Weak.	4
		9	FEMALE	Weak.	4
		11	FEMALE	Weak.	4
BZ0117	BZ3116	2	MALE	Deep purple in color and cold.	4
ė		4	FEMALE	Deep purple in color and cold.	4
		5	FEMALE	Deep purple in color and cold.	4
		6	FEMALE	Deep-gurple in color and cold.	4
BZ0127	BZ3109	8	FEMALE	Tip of tail missing.	14-21
CONTROL	PUPS FOST	ERD BY CO	NTROL L	DAMS (	•
BZ0145	BZ0160	13	FEMALE	Enlarged right eye.	19-20
BZ0152	BZ0155	10	FEMALE	Hematoma covering whole head and neck.	0
TREATED	PUPS FOST	ERED BY CO	ONTROL	DAMS	
		· · · · · · · · · · · · · · · · · · ·			
BZ3109	BZ0127	9	FEMALE	Unthrifty.	1
BZ3123	BZ0102	8	MALE	Moribund and sacrificed.	0-1
		9	MALE	Moribund and sacrificed.	0-1
BZ3130	NCF	1	MALE	Moribund and sacrificed.	0
TDEATER	DUDG FORT	EDEN DV TE	DEATED :	DANC	
TREATED	PUPS FOST	ENEW BY IN	EA!EU	DAMO	1
BZ3132	BZ3140	3	MALE	Moribund and sacrificed.	3
BZ3151	BZ3133	6	FEMALE	Bite mark on ventral thorax.	10-13
BZ3143	BZ3145	12	FEMALE	Approximately one half of tail missing.	9-21

### 101254

## MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

AVERAGE NUMBER OF PUPS MISSING
OR CANNIBALIZED PER LITTER AND NUMBER
OF DAMS WITH LITTERS IN WHICH ONE OR BOTH
OF THESE OCCURANCES WERE OBSERVED

BEFORE CROSS FOSTER (A)

P		OBSERVATION	
>	MISSING	CANNIBALIZED	TOTAL
AVG. PUPS/LITTER (B)			
GROUP I N ≠ 27	0.04	0.04	0.08
GROUP II N = 24	0.00	0.00	0.00
GROUP II N = 24	<i>,</i>	0.13	0.46
GROUP I' N = 27	v ^O 0.11	0.93	1.04
NUMBER OF DAMS (C)	. 7 		
GROUP I		1	2
N = 27 GROUP II N = 24	0	0	` 0
GROUP II N ≠ 24	1		4
GROUP !' N = 27	У 3	<b>○8</b>	11

- (A) SOME INFORMATION WAS OBTAINED FROM ANIMALS THAT WERE NOT CROSS FOSTERED.
  THESE ANIMALS WERE OBSERVED UNTIL THE TIME THEY WERE NO LONGER AVAILABLE FOR
  CROSS FOSTER DUE TO TIME CONSTRAINTS. THEREFORE, INFORMATION FROM
  NON-CROSSED ANIMALS IS INCLUDED IN THE "BEFORE CROSS FOSTER" SUMMARY ONLY.
- (B) GROUPS I AND II = CONTROL GROUPS III AND IV = 260 PPM
- (C) THIS IS THE NUMBER OF DAMS THAT HAD LITTERS IN WHICH PUPS WERE MISSING OR CANNIBALIZED.

AVG = AVERAGE N = NUMBER OF LITTERS

101254

### MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

AVERAGE NUMBER OF PUPS MISSING
OR CANNIBALIZED PER LITTER AND NUMBER
OF DAMS WITH LITTERS IN WHICH ONE OR BOTH
OF THESE OCCURANCES WERE OBSERVED

AFTER CROSS FOSTER

$\sim$		OBSERVATION _ ^ _				
AVG. PUPS/LITTER (A)	MISSING	CANNIBALIZED	TOTAL			
GROUP I	0.47	0.00	0.47			
N=17						
GROUP !! N = 24	0.00	0.00	0.00			
	^					
GROUP III	1.17	0.33	1.50			
N = 18	4					
GROUP IV N = 20	1.95	0.90	2.85			
NUMBER OF DAMS (B)	Ç					
GROUP I	⊸ 3	0	3			
N = 17	<i>)</i> -					
GROUP II	0	0	0			
N = 24			*			
GROUP III	6	О з	9			
N = 18 GROUP IV	10	<i>⇔</i>	17			
N = 20	10		17			
		$\bigcap$				

- (A) THESE NUMBERS ARE ATTRIBUTABLE TO THE DAMS AND INDICATE HOW THEY DID AFTER CROSS FOSTERING TOOK PLACE.
  - -GROUP I (CONTROL) DAMS HAD GROUP III (260 PPM) PUPS.
  - -GROUP II (CONTROL) DAMS HAD GROUP II (CONTROL) PUPS.
  - -GROUP III (260 PPM) DAMS HAD GROUP I (CONTROL) PUPS.
  - -GROUP IV (260 PPM) DAMS HAD GROUP IV (260 PPM) PUPS.
- (B) THIS IS THE NUMBER OF DAMS THAT HAD LITTERS IN WHICH PUPS WERE MISSING  $^{\prime}$  CANNIBALIZED.

AVG = AVERAGE

N = NUMBER OF LITTERS

-9-

TABLE 4

009140

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH DEF STUDY NUMBER 88-971-BZ VIABILITY INDEX

MEANS AND (STANDARD DEVIATIONS)*

LEVEL ?	VIABILITY INDEX DAY 4	VIABILITY INDEX DAY 7	VIABILITY INDEX DAY 14	VIABILITY INDEX DAY 21
GROUP I (CONTROL)	82 <b>a</b>	82 <b>a</b>	82a	<b>82a</b>
•	(28)	(28)	(28)	(28)
GROUP II (CONTROL)	O 100b	100b	100b	100b
	<b>√</b> (0)	(0)	(0)	(0)
GROUP III (260 PPM)	81a	68a	63a	63a
	(30)	(44)	(43)	(43)
GROUP IV (260 PPM)	39c 🔘	31c	28c	28c
	(47)	<b>(43)</b> ⊘	(42)	(42)

* = VIABILITIES FOR DAYS 4, 7, 14 AND 21 WERE OBSÉRVED AFTER PUPS WERE GIVEN TO THEIR CROSS FOSTER DAM.

AFTER DAY 0:
GROUP I IS CONTROL DAMS WITH 260 PPM PUPS.
GROUP II IS CONTROL DAMS WITH CONTROL PUPS.
GROUP III IS 260 PPM DAMS WITH CONTROL PUPS.
GROUP IV IS 260 PPM DAMS WITH 260 PPM PUPS.

Values with the same letter are not statistically significantly different (p  $\leq$  0.05).

## MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

AFFECT OF CANNIBALIZATION ON THE DAY-21 VIABILITY INDEX (%)

### **MEANS AND STANDARD DEVIATIONS**

	Dose Level	Died Day 0 PC to Day 21	Cannibalized Day 0 PC to Day 21	% of Dead Cannibalized	Viability Index Day 21	Adjusted Day 21 Index*
		<u>~</u>				
	GROUP I	<b>^</b> 17	4=	47	47	47
N			17	17	17	17
MEAN		<b>1.06</b>	0.47	16.47	82.25	91.22b
SD		1.48	1.18	36.90	27.83	13.88
	GROUP II					·
N		24	24	24	24	24
MEAN		0.00	0.00	0.00	100.00	100.00a
SD		0.00	0.00	0.00	0.00	0.00
	GROUP III				·	
N		18	1 18	18	18	18
MEAN		2.72	1.50	26.02	62.50	82.73b
SD		3.03	2.11	34.01	43.30	23.74
				·	····	<del></del>
	GROUP IV		<del></del> -7			
N		21	21	21	21	21
MEAN		4.19	2.76	52.32	28.40	75.03b
SD		3.20	2.96	41.28	42.04	34.56

PC = Postcull

N = Number of litters

SD = Standard deviation

**<** 

GROUP I = CONTROL DAMS WITH 260 PPM PUPS.

GROUP II = CONTROL DAMS WITH CONTROL PUPS.

GROUP III = 260 PPM DAMS WITH CONTROL PUPS.

GROUP IV = 260 PPM DAMS WITH 260 PPM PUPS.

* = Viability index day 21 - Cannibalization. This equation assumes that the only pups which died during the 21-day lactation were those which were not cannibalized or missing.

Values with the same letter are not statistically significantly different ( $p \le 0.05$ ).

009140

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ LITTER WEIGHT (GRAMS)

**MEANS AND (STANDARD DEVIATIONS)*** 

 $\langle \rangle$ 

LEVEL	LITTER WEIGHT DAY 0 (A)	LITTER WEIGHT DAY 4	LITTER WEIGHT DAY 7	LITTER WEIGHT DAY 14	LITTER WEIGHT DAY 21
	,				
GROUP I (CONTROL)	∕- 6.5a	10.4a	15.2a	30.6a	50.6a
	(1)	(1)	(2)	(3)	(5)
GROUP II (CONTROL)	<b>6</b> 7a	11.0a	16.3a	31.3a	53.8a
	(0)	(1)	(1)	(2)	(4)
GROUP III (260 PPM)	6.8a	7.5b	11.1b	21.0b	34.9b
,	(1) 1	(1)	(2)	(4)	(6)
GROUP IV (260 PPM)	6.6a	<u>7.5</u> b	9.6b	21.0b	34.9b
•	(1)	<b>(2)</b>	(2)	(4)	(8)

(A) = DAY 0 LIVE WEIGHT.

*WEIGHTS FOR DAYS 4, 7, 14 AND 21 WERE OBSERVED AFTER PUPS WERE PLACED WITH THEIR CROSS FOSTER DAM.

AFTER DAY 0:

GROUP I = CONTROL DAMS WITH 260 PPM PUPS.
GROUP II = CONTROL DAMS WITH CONTROL PUPS.
GROUP III = 260 PPM DAMS WITH CONTROL PUPS.
GROUP IV = 260 PPM DAMS WITH 260 PPM PUPS.

Values with the same letter are not statistically significantly different (p  $\leq$  0.05).

Þ

### 101254

### MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

## CHOLINESTERASE DATA (IU/ml) MEANS AND STANDARD DEVIATIONS

9 WEEK BLEEDING

	DOSE @ROUP	DOSE LEVEL	PLASMA CHOLINESTERASE	ERYTHROCYTE CHOLINESTERASE	BRAIN CHOLINESTERASE
	<u>(f</u>	CONTROL			
NUMBER	` .	COMMOL	10	10	
MEAN	P		1.99	2.34	•
SD		λ.	0.40	0.19	•
	11	CONTROL			
NUMBER			10	10	•
MEAN SD	•		1.61 0.39	2.58 0.18	•
3D		$\bigcirc$	0.33	U. 16	•
	111	260 PPM	<u> </u>		
NUMBER			10	10	•
MEAN			0.08*	1.04*	•
\$D			<b>∠</b> 0.03	0.05	
	0/	000 0011			<u>,                                      </u>
NUMBER	īV	260 PPM	10	10	
MEAN			0.12*	0.99*	•
SD			0.03 ⁽²⁾	0.09	•
			TERMINAL BLEE	). DING	
	ı	CONTROL	4.6	$\bigcirc$	
N MEAN			10	10	10
MEAN SD			1.02 0.15	2.49 0.14	15.0
30			0.15	0.14	0.90
·	11	CONTROL			
N			10	10 🗠	10
MEAN			0.81	2.64	15.3
SD			0.13	0.26	J 1.80
	111	260 PPM			<del></del>
N			10	10	√ 10
MEAN			0.15*	1.18*	/
SD			<del>-</del>		2,7*
<b>3</b> U			0.10	0.18	0.6
	IV	260 PPM			
N			10	10	10 /
MEAN			0.13*	1.13*	3.2*
SD			0.09	0.12	
			V.V3	U. 12	1.0

### SD = Standard Deviation

^{*}Statistically significantly different (p ≤ 0.05) from the control group (groups I and II, and groups III and IV were combined for statistical comparison).

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPAREMENT 254 RAT CROSS FOSTERING STUDY WITH DEF STUDY NUMBER 88-971-BZ

### PUP OBSERVATIONS SUMMARY

7	FOSTER	PUP			DAY(S)
DAM#		NUMBER	SEX	OBSERVATION	OBSERVED
CONTROL	PURS FOST	<u>ERED BY TI</u>	REATED	<u>DAMS</u>	
BZ0101	BZ3117	9	FEMALE	Bite mark and hematoma on chest.	7
BZ0102	BZ3123	<b>3</b> ⋈	MALE	Tip of tail missing.	21
BZ0109	BZ3128	~ <u>→</u> 10	FEMALE	Bite marks on dorsal side.	3
BZ0113	BZ3130	Д	MALE	Cold and weak.	4
		2	MALE	Cold and weak.	4
		3	MALE	Cold and weak.	4
D70+14	D72406	. 0	MALE	Weak.	<b>A</b>
BZ0114	BZ3105	1 0	MALE ✓	weak.	4
,		4 7	FEMALE		4
		9	FEMALE		4
		11	FEMALE	· · · · · · · · · · · · · · · · · · ·	4
		[ ]	LEMME	Weak.	4
<b>B</b> Z0117	BZ3116	2	MALE	Deep purple in color and cold.	4
		4	FEMALE	<b>C</b>	4
		5	FEMALE		4
		6	FEMALE	• • •	4
		-			·
BZ0127	BZ3109	8	FEMALE	Tip of tail missing.	14-21
CONTROL BZ0145	PUPS FOST	<i>ERD BY CO</i>	<i>NTROL L</i> FEMALE	DAMS Enlarged right eye.	19~20
BZ0152	BZ0155	10	FEMALE	Hematoma covering whole head and neck.	o ·
520152	<b>DE</b> 0133	10	I BIAIVEE	<u> </u>	U
				<	
TREATED	PUPS FOSTE	RED BY CO	ONTROL	<u>DAMS</u>	
BZ3109	BZ0127	9	FEMALE	Unthrifty.	
023109	020:27	3	FEMALE	Outsiney.	1
BZ3123	BZ0102	8	MALE	Moribund and sacrificed.	0-1
		9	MALE	Moribund and sacrificed.	0-1
				<i>&gt;</i>	
BZ3130	NCF	1	MALE	Moribund and sacrificed.	0
TOCATED	0U00 500T				
INEALED	PUPS FOSTE	TEU BY IN	EAIEU L	UAMO /	1
BZ3132	BZ3140	3	MALE	Moribund and sacrificed.	3
870464	070400	•	EE111 =	Dita most as sense of the	
BZ3151	BZ3133	6	FEMALE	Bite mark on ventral thorax.	10-13
BZ3143	BZ3145	12	FEMALE	Approximately one half of tail missing.	9-21
	<del>-</del> -	_			·
				•	

101254

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

AVERAGE NUMBER OF PUPS MISSING
OR CANNIBALIZED PER LITTER AND NUMBER
OF DAMS WITH LITTERS IN WHICH ONE OR BOTH
OF THESE OCCURANCES WERE OBSERVED

BEFORE CROSS FOSTER (A)

	P		OBSERVATION	
	· > .	MISSING	CANNIBALIZED	TOTAL
AVG. PUPS/LITTER (B)	L			
	GROUP I	0.04	0.04	0.08
	N = 27			
_	GROUP II	0.00	0.00	0.00
-	N = 24			
	GROUP III	0.33	. 0.13	0.46
	N = 24	0.11		
	GIIOOI II	9.11	0.93	1.04
	N = 27	<u></u>		
NUMBER OF DAMS (C	1	Y		
		1		
	GROUP I	1	1	2
	N = 27	$\cap$		
	GROUP II	0	0	` 0
	N = 24		$\supset$	•
	GROUP III	1	<i>3</i>	4
	N = 24		<i>₹</i>	
	GROUP IV	3	<b>⊘8</b>	11
	N = 27			
			$\langle \cdot \rangle$	

- (A) SOME INFORMATION WAS OBTAINED FROM ANIMALS THAT WERE NOT CROSS FOSTERED.
  THESE ANIMALS WERE OBSERVED UNTIL THE TIME THEY WERE NO LONGER AVAILABLE FOR
  CROSS FOSTER DUE TO TIME CONSTRAINTS. THEREFORE, INFORMATION FROM
  NON-CROSSED ANIMALS IS INCLUDED IN THE "BEFORE CROSS FOSTER" SUMMARY ONLY.
- (B) GROUPS I AND II = CONTROL GROUPS III AND IV = 260 PPM
- (C) THIS IS THE NUMBER OF DAMS THAT HAD LITTERS IN WHICH PUPS WERE MISSING OR CANNIBALIZED.

AVG = AVERAGE N = NUMBER OF LITTERS -15-

### TABLE 3

### 101254

### MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

AVERAGE NUMBER OF PUPS MISSING
OR CANNIBALIZED PER LITTER AND NUMBER
OF DAMS WITH LITTERS IN WHICH ONE OR BOTH
OF THESE OCCURANCES WERE OBSERVED

AFTER CROSS FOSTER

$\sim$			OBSERVATION 4	
AVG. PUPS/LITTER (A)		MISSING	CANNIBALIZED	TOTAL
	GROUP I	0.47	0.00	0.47
	N = 17_			
	GROUP II	0.00	0.00	0.00
	N = 24			
	CBOUR III	1.17	0.33	1 50
	GROUP III N = 18		0.33	1.50
	GROUP IV N = 20	1.95	0.90	2.85
NUMBER OF DAMS (B)	!			
	GROUP I	<b>∀</b> 3	0	3
	N = 17	<i></i>	•	•
	GROUP II N = 24	0	0	0
	GROUP III	6	О з	9
	N = 18	ð	Ç <b>,</b>	3
	<b>GROUP IV</b>	10	7 7	17
	N = 20		$\cap$	

- (A) THESE NUMBERS ARE ATTRIBUTABLE TO THE DAMS AND INDICATE HOW THEY DID AFTER CROSS FOSTERING TOOK PLACE.
  - -GROUP I (CONTROL) DAMS HAD GROUP III (260 PPM) PUPS.
  - -GROUP II (CONTROL) DAMS HAD GROUP II (CONTROL) PUPS.
  - -GROUP III (260 PPM) DAMS HAD GROUP I (CONTROL) PUPS.
  - -GROUP IV (260 PPM) DAMS HAD GROUP IV (260 PPM) PUPS.
- (B) THIS IS THE NUMBER OF DAMS THAT HAD LITTERS IN WHICH PUPS WERE MISSING CANNIBALIZED.

AVG = AVERAGE

N = NUMBER OF LITTERS

-16-

### 101254

### TABLE 4

009140

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH DEF STUDY NUMBER 88-971-BZ VIABILITY INDEX

MEANS AND (STANDARD DEVIATIONS)*

VIABILITY VIABILITY VIABILITY VIABILITY **INDEX DAY 7** INDEX DAY 14 INDEX DAY 21 INDEX DAY 4 **LEVEL** 82a 82a 82a GROUP I (CONTROL) 822 (28)(28)(28)(28)100b 100b **GROUP II (CONTROL)** 100b 100b **⋌**(0) (0) (0) (0) GROUP III (260 PPM) 81a 68a 63a 63a (30) (44)(43)(43)28c 28c **GROUP IV (260 PPM)** 39¢ 31c (43)(42)(42)

* = VIABILITIES FOR DAYS 4, 7, 14 AND 21 WERE OBSÉRVED AFTER PUPS WERE GIVEN TO THEIR CROSS FOSTER DAM.

AFTER DAY 0:

GROUP I IS CONTROL DAMS WITH 260 PPM PUPS.
GROUP II IS CONTROL DAMS WITH CONTROL PUPS.
GROUP III IS 260 PPM DAMS WITH CONTROL PUPS.
GROUP IV IS 260 PPM DAMS WITH 260 PPM PUPS.

Values with the same letter are not statistically significantly different (p ≤ 0.05).

LABLE 3

### 101254

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

AFFECT OF CANNIBALIZATION ON THE DAY-21 VIABILITY INDEX (%)

#### MEANS AND STANDARD DEVIATIONS

	Dose Level	Died Day 0 PC to Day 21	Cannibalized Day 0 PC to Day 21	% of Dead Cannibalized	Viability Index Day 21	Adjusted Day 21 index*
	<u> </u>			<u> </u>		
	GROUP I				4.	
N		<b>^</b> 17	17	. 17	17	17
MEAN		<b>∕</b> 06	0.47	16.47	82.25	91.22b
SD		1.48	1.18	36.90	27.83	13.88
<del></del>	GROUP II	1				
N		24	24	24	24	24
MEAN	·	0.00		0.00	100.00	100.00a
SD		0.00	0.00	0.00	0.00	0.00
	GROUP III				<u> </u>	
N		18	1 18	18	18	18
MEAN	•	2.72	1,50	26.02	62.50	82.73b
SD		3.03	2,11	34.01	43.30	23.74
<u> </u>	GROUP IV					
N		21	21	21	21	21
MEAN		4.19	2.76	52.32	28.40	75.03b
SD		3.20	2.96	41.28	42.04	34.56

PC = Postcull

N = Number of litters

SD = Standard deviation

0

GROUP I = CONTROL DAMS WITH 260 PPM PUPS.
GROUP II = CONTROL DAMS WITH CONTROL PUPS.

GROUP III = 260 PPM DAMS WITH CONTROL PUPS.

GROUP IV = 260 PPM DAMS WITH 260 PPM PUPS.

* = Viability index day 21 - Cannibalization. This equation assumes that the only pups which died during the 21-day lactation were those which were not cannibalized or missing.

Values with the same letter are not statistically significantly different ( $p \le 0.05$ ).

-18-

009140

TABLE 6

# MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ LITTER WEIGHT (GRAMS)

**MEANS AND (STANDARD DEVIATIONS)*** 

<b>~</b> `					
LEVEL	LITTER WEIGHT DAY 0 (A	LITTER ) WEIGHT DAY 4	LITTEA WEIGHT DAY 7	LITTER WEIGHT DAY 14	LITTER WEIGHT DAY 2
GROUP I (CONTROL)	∠ 6.5a	10.4a	15.2a	30.6a	50.6a
	(1)	(1)	(2)	(3)	(5)
GROUP II (CONTROL)	<b>6</b> 7a	11.0a	16.3a	31.3a	53.8a
	(0)	(1)	(1)	(2)	(4)
GROUP III (260 PPM)	6.8a	7.5b	11.1b	21.0b	34.9b
	(1)	(1)	(2)	(4)	(6)
GROUP IV (260 PPM)	6.6a	7.5b	9.6b	21.06	34.9b
	(1)	्र <mark>(2)</mark>	(2)	(4)	(8)

(A) = DAY 0 LIVE WEIGHT.

*WEIGHTS FOR DAYS 4, 7, 14 AND 21 WERE OBSERVED AFTER PUPS WERE PLACED WITH THEIR CROSS FOSTER DAM.

AFTER DAY 0:

GROUP I = CONTROL DAMS WITH 260 PPM PUPS.
GROUP II = CONTROL DAMS WITH CONTROL PUPS.

ATTACK TO CONTINUE DAMA WITH CONTINUE FOR C.

GROUP III = 260 PPM DAMS WITH CONTROL PUPS.

GROUP IV = 260 PPM DAMS WITH 260 PPM PUPS.

Values with the same letter are not statistically significantly different (p  $\leq$  0.05).

-

-19-**TABLE 7**  101254

### MOBAY CORPORATION - CORPORATE TOXICOLOGY DEPARTMENT RAT CROSS FOSTERING STUDY WITH TRIBUFOS STUDY NUMBER 88-971-BZ

009140

## CHOLINESTERASE DATA (IU/ml) MEANS AND STANDARD DEVIATIONS

9 WEEK BLEEDING

	DOSE	DOSE	PLASMA	ERYTHROCYTE CHOLINESTERASE	BRAIN CHOLINESTERASE
	<u>AROUP</u>	LEVEL	CHOLINESTERASE	CHULINESTERASE	CHOLINESTERASE
	<b>√</b>	CONTROL			
NUMBER	$\wedge$		10	10	•
MEAN	$\sim$		1.99	2.34	• .
SD		<i>&gt;</i> .	0.40	0.19	•
	II	CONTROL			
NUMBER			10	10	•
MEAN		$\widehat{}$	1.61 0.39	2.58 0.18	•
SD		$\circ$	0.39	U. 16	•
	121	260 PPM	✓	10	
NUMBER MEAN			10 0.08*	1.04*	ē
SD SD			⊅ 0.03	0.05	•
			<u></u>		•
NUMBER	IV	260 PPM	19	10	
MEAN			0.12* <	0.99*	•
SD			0.03	0.09	•
			TERMINAL BLEE	DING	
	i	CONTROL		$\bigcirc$	
N	i	CONTROL	10	○ ₁₀	10
MEAN	i	CONTROL	1.02		15.0
MEAN	i	CONTROL		10 2:49 0:14	
MEAN SD	I II	CONTROL	1.02 0.15	2:49 0:14	15.0 0.90
MEAN SD 			1.02 0.15	2:49 0:14 	15.0 0.90
MEAN SD  N MEAN			1.02 0.15 10 0.81	2:49 0:14 	15.0 0.90 10 15.3
MEAN SD  N MEAN			1.02 0.15	2:49 0:14 	15.0 0.90
MEAN SD N MEAN SD			1.02 0.15 10 0.81 0.13	2:49 0:14 	15.0 0.90 10 15.3 1.80
MEAN SD N MEAN SD	11	CONTROL	1.02 0.15 10 0.81	2:49 0:14 	15.0 0.90 10 15.3
N MEAN SD N MEAN SD N MEAN	II	CONTROL	1.02 0.15 10 0.81 0.13	2:49 0:14 	15.0 0.90
MEAN SD N MEAN SD N MEAN	II	CONTROL	1.02 0.15 10 0.81 0.13	2:49 0:14 10 2:64 0:26	15.0 0.90 10 15.3 1.80
MEAN SD N MEAN SD N MEAN	II	CONTROL	1.02 0.15 10 0.81 0.13	2:49 0:14 10 2:64 0:26	15.0 0.90 10 15.3 1.80
MEAN SD N MEAN SD N MEAN SD	11	CONTROL 260 PPM	1.02 0.15 10 0.81 0.13	2:49 0:14 10 2:64 0:26	15.0 0.90 10 15.3 1.80 7 10 2.7* 0.6
MEAN SD N MEAN SD	11	CONTROL 260 PPM	1.02 0.15 10 0.81 0.13 10 0.15* 0.10	2:49 0:14 10 2:64 0:26 10 1.18* 0.18	15.0 0.90 10 15.3 1.80 7 10 2.7* 0.6

### SD = Standard Deviation

^{*}Statistically significantly different (p ≤ 0.05) from the control group (groups I and II, and groups III and IV were combined for statistical comparison).

Data Evaluation Report

Compound Tribufos (DEF)

#### Citation

A dietary reproductive toxicity study investigation the fertility of F1 rats using Tribufos (DEF®), D.A. Eigenberg; Mobay, Corporate Toxicology Department, Study Number 88-971-DC; Aug 27, 1991; MRID 420401-02

Reviewed by Robert P. Zendaran Ph.D.

Senior Pharmacologist

Health Effects Division

Core Classification Unacceptable

#### Conclusion

The following footnotes were contained in the report;
"Due to an error, the control and 260 ppm rats received a
mixture of control and 260 ppm feed for one day during week
13 of the study (i.e., mating/gestation phase).
"Due to a feeding error, terminal cholinesterase values were
obtained from 6 high dose and 8 control animals."
No explanation was found in the test. It is not certain how
the feeding errors, particularly the second might have affected
the study.
Materials

Technical grade Tribufos
Straw colored liquid
Batch No; 85R-26-39
98.7% (3/28/89)
98.1% (9/12/89)
From Mobay Ag Chemicals Division

Male and female albino CD Sprague-Dawley rats, pups from Mobay study 88-971-BZ; Aug 29, 1991

### Experimental Design

Male and female pups from Mobay study 88-971-DC were utilized for this study. Pups were from Group II - pups from untreated dams cross fostered with untreated dams and from Group IV - pups from treated dams cross fostered with treated dams. Pups were treated with 0 or 260 ppm tribufos in the diet respectively from weaning. After 10 weeks on the test diet these F1 animals were bred within their test groups (30 per sex per test group).a

### Test material analysis

Test material was analyzed for concentration in the feed.

a. "Due to an error, the control and 260 ppm rats received a mixture of control and 260 ppm feed for one day during week 13 of the study (i.e., mating/gestation phase)."

### Breeding

One male and one female were cohabited for breeding for up to 21 days. Females were checked daily for vaginal plug and vaginal smears examined for sperm. When sperm was observed females were housed individually for gestation and lactation. Unmated females were cohabited with a second proven male for up to 7 days. Whether or not breeding was observed these females were subsiquently housed individually for gestation and lactation.

### Clinical observations

Rats were observed daily for morbidity, mortality and clinical signs in the cage. Animals were individually examined weekly.

Plasma, red blood cell and brain cholinesterase were determined on 10 adults per sex per group, plasma and RBC during week 8 and just prior to sacrifice and brain at termination. Due to a feeding error, terminal cholinesterase values were obtained from 6 high dose and 8 control females.

### Sacrifice

' Females were sacrificed on day 20 of gestation and males after completion of breeding. All females were necropsied to determine if pregnant (implantation sites or pups present).

#### Results

Test material concentrations in the nominal dose of 260 ppm were 240 ppm week 1 and 237 ppm week 14.

No clinical signs indicative of cholinesterase toxicity were observed.

Fertility indices are presented in Table 2 from the report. Value were 93% control and 83% 260 ppm. The differences were not statistically significant.

Cholinesterase activity is presented in Table 3 from the report. All values are significantly depressed at 260 ppm.

The following footnotes were found in the report. Since there was no further explanation, it is impossible to determine what affect they may have had on the study. This may have been of critical importance since only 8 control and 6 high dose females were available for cholinesterase analysis out of 30 females for each dose.

"Due to an error, the control and 260 ppm rats received a mixture of control and 260 ppm feed for one day during week 13 of the study (i.e., mating/gestation phase).

<del>-</del>3-

"Due to a feeding error, terminal cholinesterase values were obtained from 6 high dose and 8 control animals."

### TABLE 2

## Fertility Indices of F0 Dams in a Rat Reproduction Study Using Technical Tribufos

009140

### Study Number 89-971-DC

Dose Group	Number Co-housed	Number Sperm Positive	Number with Implantation Sites or Pups Present	Fertility Index %
Control	30 🕏	30	28	93
260.0 ppm	30	<i>→</i> 30	25	83

- (a) = Any female with pups and/or implantation sites present in uterus at time of necropsy.
- (b) = Includes females with pups and/or implantation sites, that were not sperm positive.

1

MOBAY Toxicology Department Study: 89-971-DC Species: Rat Generation: F0			esterase Activity in a Rat \( \) dy Using Technical Tributos	>	
GROUP M	EANS			٧ 🛪	
MALES		DAY 51 PChe IU/ml	DAY 51 RChe IU/ml	<i>y</i> O <i>y</i>	
CONTROL	Mean SD n	0.50 0.08 10	2.76 0.19 10		
нісн	Mean SD n	0.16* 0.03 10	1.32* 0.08		

^{*}Statistically significantly different from the control group (p≤0.05).

δ

MOBAY Toxicology Department Study: 89-971-DC Species: Rat Generation: F0		<del>-</del>	inesterase Activity in a Rat		
GROUP MEANS			· · · · · · · · · · · · · · · · · · ·	·	,
FEMALES		Day 51 PChe IU/ml	Day 51 RChe IU/ml	> · ·	, Ann ann an Air Air ann aith 370 A
CONTROL	Mean SD n	1.68 0.42 10	2.64 0.16 10	1-7	
НІGН	Mean SD n	0.13* 0.04 10	1.35* 0.08		

0 b

b O

10.8*

0.8

10

10

1.25

0.10

10

TABLE 3

10

0.12*

10

0.05

Mean SD

n

MOBAY Toxicology Department

Study: 89-971-DC

HIGH

^{*}Statistically significantly different from the control group (p<0.05).

MODAL TOXICOTOUV DEDATTMENT.	MOBAY	XOT Y	icology	Department
------------------------------	-------	-------	---------	------------

Study: 89-971-DC

Terminal Cholinesterase Activity in a Rat Reproduction Study Using Technical Tribufos

Species : Rat

Generation: F0

GROUP

FEMALES		Day 85 PChe IU/ml	Day 85 RChe IU/ml	Day 85 BChe IU/g	
CONTROL	Mean	2.00	2.44	, <b>15.1</b>	
	SD	0.37	0.20	_ [√] 1.3	
	n	8	<b>8</b>	8	
HIGH	Mean	0.13*	1.03*	4.7*	
•	SD	0.02	0.11	1.8	
	n	6		6	

^{*}Statistically significantly different from the control group (p≤0.05).

4 0 0 S

89 **U**T



Chemical:

S,S,S-Tributyl phosphorotrithioate

PC Code:

074801

**HED File Code** 

13000 Tox Reviews

Memo Date:

02/11/92

File ID:

TX009140

Accession Number:

412-02-0280

HED Records Reference Center 04/10/2002